(1) HashiCorp

Data Races!

What are they?
Why should | care?
How do | fix them?

Michael Schurter
@schmichael
Nomad Team Lead

Michael Schurter

Nomad Team Lead / Principal Engineer
he/him

@schmichael{@mastodon.cloud]

What is a
Data Race?

A data race occurs when
two goroutines access the
same variable concurrently
and at least one of the
accesses is a write.

— Go’s Data Race Detector Docs

func main() {

a =1

go func() {
fmt.Println(a)

1O

a=2

}

WARNING: DATA RACE
Read at Ox00c0001ae®O8 by goroutine 7:

Previous write at Ox00c0001ae®08 by main goroutine:

Goroutine 7 (running) created at:

https://go.dev/doc/articles/race_detector

Whatisn't a
Data Race?

A data race occurs when
two goroutines access the
same variable concurrently
and at least one of the
accesses is a write.

— Go’s Data Race Detector Docs

func main() {

a :=1
go func() {

fmt.Println(a, "No worries!™)
1O
go func() {

fmt.Println(a, "This is fine.™)
1O
go func() {

b :=a + 1

fmt.Println(b, "This is mine.™)
1O

}

$ go run -race simple2.go
1 This is fine.

1 No worries!

2 This is mine.

https://go.dev/doc/articles/race_detector

HHHHHHHHHHH

Why should | care?

(

6

The Gopher Said So

© HASHICORP

e —
The Go Memory Model

Version of June 6, 2022

Table of Contents

Introduction Locks
Advice Once
Informal Overview Atomic Values
Memory Model Finalizers
Implementation Restrictions for Programs Containing Data Races Additional Mechanisms
Synchronization Incorrect synchronization
Initialization Incorrect compilation
Goroutine creation Conclusion

Goroutine destruction
Channel communication

Introduction

The Go memory model specifies the conditions under which reads of a variable in one goroutine can be guaranteed to observe values produced by writes to the
same variable in a different goroutine.

Advice
Programs that modify data being simultaneously accessed by multiple goroutines must serialize such access.
To serialize access, protect the data with channel operations or other synchronization primitives such as those in the sync and sync/atomic packages.

If you must read the rest of this document to understand the behavior of your program, you are being too clever.

(

7

Excerpts from the Go Memory Model

Don't

Programs that modify
data being
simultaneously
accessed by multiple
goroutines must

serialize such access.

© HASHICORP

Anger the Gopher

If you must read the [A Go] implementation When it comes to

rest of [the Go memory may always react to a programs with races,
model] to understand data race by reporting both programmers and
the behavior of your the race and compilers should
program, you are being terminating the remember the advice:
too clever. program. don't be clever.

Don't be clever.

(

Map Races Crash

func main() {
m := map[int]int{}

Data races with maps will crash go func() |
your program even without for i := 0; i < 1e10; i++ {
enabling the race detector. m[(i] = i
}
HO
go func() {
for i := 0; i < 1el0; i++ {
m[i] =
}
HO

«context.Background().Done()

$ go run mapparty.go
fatal error: concurrent map writes

Why Should | Care? Security Edition

Data races can lead to security vulnerabilities

JXCVE-2020-15586 Detail

Description

Go before 1.13.13 and 1.14.x before 1.14.5 has a data race in some net/http servers, as demonstrated by the httputil.ReverseProxy Handler,
because it reads a request body and writes a response at the same time.

Seventy (AT REl CVSS Version 2.0

CVSS 3.x Severity and Metrics:

ii \" NIST: NVD Base Score: | 5.9 MEDIUM Vector: CVSS:3.1/AV:N/AC:H/PR:N/UL:N/S:U/C:N/I:N/A:H

NVD Analysts use publicly available information to associate vector strings and CVSS scores. We also display any CVSS information provided within the
CVE List from the CNA.

Note: NVD Analysts have published a CVSS score for this CVE based on publicly available information at the time of analysis. The CNA has not provided
a score within the CVE List.

9 © HASHICORP

QUICK INFO

CVE Dictionary Entry:
CVE-2020-15586
NVD Published Date:

07/17/2020

NVD Last Modified:

12/03/2022
Source:

MITRE

“%= Dmitry Vyukov
? @dvyukov

Whoa! Actual memory safety exploit for #golang
using data race to break safety of interface object
(races are the only escape hatch for memory/type
safety in Go).
You are testing your Go code with the race detector (-
race), right?

2 Netanel Ben Simon @NetanelBenSimon - Nov 6, 2019

Here is my writeup for gomium from #GoogleCTF 2019 finals.

github.com/netanel01/ctf-...

12:32 AM - Nov 8, 2019

(

Writing data race free
programs
demonstrates an
understanding of the
program’s execution.

10 © HASHICORP rrlJ

111111111111

How do | find data races?

(

Go’s Race
Detector

The -race flag enables the
race detector on any Go
command that creates or
runs a binary:

go install
go build
go test
go get

func main() {

a =1

go func() {
fmt.Println(a)

1O

a=2

}

WARNING: DATA RACE
Read at Ox00c0001ae®O8 by goroutine 7:

Previous write at Ox00c0001ae®08 by main goroutine:

Goroutine 7 (running) created at:

HHHHHHHHHHHH

Zero false positives

(

14

O Lies Detected

The race detector may not
detect all races, but it will
never lie to you about a race.

When it reports a data race,
there's a data race.

https://go.dev/blog/race-detector

© HASHICORP

Conclusions

The race detector is a powerful tool for checking the correctness of concurrent programs. It will not issue false
positives, so take its warnings seriously. But it is only as good as your tests; you must make sure they thoroughly
exercise the concurrent properties of your code so that the race detector can do its job.

What are you waiting for? Run "go test -race" on your code today!

https://go.dev/blog/race-detector

Anatomy of a / .
$ go run -race simple/simple.go > /dev/null
detected race [t

WARNING: DATA RACE
Read at Ox00cO0001aBb8 by goroutine 7:
main.main. funcl()

Delimited by /.../simple.go:9 +Ox3a 3

Special exit code (66)
Where the read happened Previous write at Ox00c00001aBb8 by main goroutine:
Where the write happened main.main()
Where non-main goroutines /.../simple.go:12 +0xb8 4
were started
Goroutine 7 (running) created at:

main.main()

/.../simple.go:8 +0Oxae 5

Found 1 data race(s)

exit status 66222

HHHHHHHHHHHH

How do | fix data races?

(

Atomics

Atomics can always fix a
data race, but it doesn’t
mean your program makes
any sense.

Both reads and writes must
use atomics to adhere to the
Go memory model.

func main() {
var a int64 = 1

go func() {
fmt.Println(atomic.LoadInt64(&a))
11@)

atomic.AddInt64(&a, 1)
}

$ go run -race simple/simple.go
2

18

Race
Conditions

Aka “bad interleaving”

A race conditionis a
situation, in which the result
of an operation depends on
the interleaving of certain
individual operations.

In this case the program
could still print 1 or 2
depending on how the
goroutines are scheduled.

© HASHICORF

func main() {
var a int64 = 1

go func() {
fmt.Println(atomic.LoadInt64(&a))
11@)

atomic.AddInt64(&a, 1)
}

$ go run -race simple/simple.go
2

Start Making

Sense
func main() {
a := make(chan int)
To fix both the data race and go func() {
race condition, we need to o fmt.Printin(<a)
make sense of this program.
a« 2

We can make some sense }
out of it (and fix races) by

using a channel.
$ go run -race simple/simple.go

2

20

Mutexes and
Critical Sections

Mutexes (aka locks) are a
common tool for serializing
access to critical sections.

This can prevent both data
races and race conditions.

“Critical section” is a fancy
way of saying “code that
must execute atomically on
shared variables.”

Critical sections can be
short (getters) or long.

© HASHICORP

func (c *Client) GetConfig() #*config.Config {

}

c.configbock.Lock()
defer c.configLock.Unlock()
return c.config

// Shutdown is used to tear down the client
func (¢ *Client) Shutdown() error {

c.shutdownLock.Lock()
defer c.shutdownLock.Unlock()

if c.shutdown {
c.logger.Info("already shutdown™)
return nil

}
c.logger.Info("shutting down™)

// Stop renewing tokens and secrets
if c.vaultClient != nil {
c.vaultClient.Stop()

}

Locks can get tricky...

vault: fix deadlock in SetConfig #6082

IR V-Gl schmichael merged 2 commits into master from b-vault-deadlock 8 on Aug 6, 2019

Q) Conversation 1 O Commits 2 [_:J, Checks © @ Files changed 2

e schmichael commented on Aug 6, 2019

This seems to be the minimum viable patch for fixing a deadlock between
establishConnection and SetConfig.

SetConfig calls tomb.Kill+tomb.Wait while holding v.lock.
establishConnection needs to acquire v.lock to exit but SetConfig is
holding v.lock until tomb.Wait exits. tomb.Wait can't exit until
establishConnect does!

SetConfig -> tomb.Wait
fa |
| v
v.lock <- establishConnection

O 0 vault: fix deadlock in SetConfig

21 © HASHICORP

Member

7e08a2f

Reviewers

’3 endocrimes

Assignees

No one—assign yourself

Labels

None yet

Projects

None yet

Milestone

No milestone

Edit

<> Code ~

+46 -4 HEER

<

(

Create Helpers
func (c *Client) UpdateConfig(cb func(*Config)) *Config {
to quqge c.configLock.Lock()

CritiCC“ SeCtiOnS defer c.configLock.Unlock()

newConfig := c¢.config.Copy()

Lock cb(newConfig)

Copy c.config = newConfig
Mutate

4. Overwrite return newConfig

Is a handy pattern for
backfilling mutability on big

balls of state (when you have to). c.UpdateConfig(func(c *Config) |
c.Node.Status = structs.NodeStatusReady

func (c *Client) someFunc() {

Access c.config requires 1)
acquiring the configLock!

22 © HASHICORP

23

Channels and Select are your Friend!

© HASHICORP

The Go Blog

Share Memory By Communicating

Andrew Gerrand
13 July 2010

Traditional threading models (commonly used when writing Java, C++, and Python programs, for example) require
the programmer to communicate between threads using shared memory. Typically, shared data structures are
protected by locks, and threads will contend over those locks to access the data. In some cases, this is made easier
by the use of thread-safe data structures such as Python’s Queue.

Go's concurrency primitives - goroutines and channels - provide an elegant and distinct means of structuring
concurrent software. (These concepts have an interesting history that begins with C. A. R. Hoare’s Communicating
Sequential Processes.) Instead of explicitly using locks to mediate access to shared data, Go encourages the use of
channels to pass references to data between goroutines. This approach ensures that only one goroutine has access
to the data at a given time. The concept is summarized in the document Effective Go (a must-read for any Go
programmer):

Do not communicate by sharing memory; instead, share memory by communicating.

Consider a program that polls a list of URLs. In a traditional threading environment, one might structure its data like
so:

type Resource struct {
url string
polling bool
lastPolled int64

)

type Resources struct {
data []*Resource
lock *sync.Mutex

(

Channels and
Select are Great

They often imbue your code
with more meaning than
atomics or mutexes.

func (c *Client) registerAndHeartbeat() {
// Start watching changes for node changes
go c.watchNodeUpdates()

// Start watching for emitting node events
go c.watchNodeEvents()

heartbeat :=
time.After(helper.RandomStagger (heartbeatStagger))

for {
select {
case «c.rpcRetryllatcher():
case <heartbeat:
case «c.shutdownCh:
return
}
if err := c.updateNodeStatus(); err != nil {

/1

...but there are worse fates than locks.

consul: fix deadlock in check-based restarts #5975 Eat || <> Code~

IV Sl schmichael merged 3 commits into master from b-check-watcher-deadlock (3 on Jul 18,2019

&

S

) Conversation 10 -0 Commits 3 El Checks o Files changed 2 +122 -6 HEEN
0 schmichael commented on Jul 17, 2019 Member | @ *** Revicweis
< notnoop
Fixes #5395
Alternative to #5957 © prectapan v
Make task restarting asynchronous when handling check-based restarts.
Assi
This matches the pre-0.9 behavior where TaskRunner.Restart was an g i @
asynchronous signal. The check-based restarting code was not designed No'one-—assign yourseif
to handle blocking in TaskRunner.Restart. 0.9 made it reentrant and
could easily overwhelm the buffered update chan and deadlock. Labels by
3 i None yet
Many thanks to @byronwolfman for his excellent debugging, PR, and
reproducer!
Projects @
| created this alternative as changing the functionality of
TaskRunner.Restart has a much larger impact. This approach reverts to Nonejyet
old known-good behavior and minimizes the number of places changes are
made. Milestone e
No milestone

-0 0 consul: fix deadlock in check-based restarts - 9c418c2

Development

25 © HASHICORP

How could channels do that?

State changes were sent to a goroutine via a channel

The goroutine calls some other methods while processing changes

If those other methods emitted a state change to the channel...

...deadlock because the receiver is also the sender!

Buffered channel?

e |twas..
e ..but that only made it harder to hit because the buffer had to fill with events first.

26 © HASHICORP

(

The What, Why, and How of Go Data Races

Data Races are Bugs

There are no benign data races.

Treat them like bugs and fix
them.

It can be a journey (Nomad'’s test
suite is not data race free).

27 © HASHICORP

Race Detector

Use it in tests.
Use it when developing.

Trust it.

Understand your Code

Programs free from data races
and race conditions demonstrate
a high level of understanding by
their developers.

Solving races helps you
understand how your program is
composed and executes.

(

lie

- Thank you

R RS @schmichael[@mastodon.cloud]

........................ mschurter@hashicorp.com

mailto:mschurter@hashicorp.com
https://github.com/DingoEatingFuzz/nomad-emoji

