
© HASHICORP1

Data Races!
What are they?
Why should I care?
How do I fix them?
Michael Schurter
@schmichael
Nomad Team Lead

© HASHICORP2

Nomad Team Lead / Principal Engineer
he/him

@schmichael[@mastodon.cloud]

Michael Schurter

© HASHICORP3

What is a
Data Race?

A data race occurs when
two goroutines access the
same variable concurrently
and at least one of the
accesses is a write.
 – Go’s Data Race Detector Docs

func main() {
a := 1

go func() {
fmt.Println(a)

}()

a = 2
}

$ go run -race simple.go
==================
WARNING: DATA RACE
Read at 0x00c0001ae008 by goroutine 7: ...

Previous write at 0x00c0001ae008 by main goroutine:
 ...

Goroutine 7 (running) created at: ...
==================
2

https://go.dev/doc/articles/race_detector

© HASHICORP4

What isn’t a
Data Race?

A data race occurs when
two goroutines access the
same variable concurrently
and at least one of the
accesses is a write.
 – Go’s Data Race Detector Docs

func main() {
a := 1

go func() {
fmt.Println(a, "No worries!")

}()
go func() {

fmt.Println(a, "This is fine.")
}()
go func() {

b := a + 1
fmt.Println(b, "This is mine.")

}()
}

$ go run -race simple2.go
1 This is fine.
1 No worries!
2 This is mine.

https://go.dev/doc/articles/race_detector

© HASHICORP5

Why should I care?

© HASHICORP6

The Gopher Said So

© HASHICORP

Don’t
Programs that modify
data being
simultaneously
accessed by multiple
goroutines must
serialize such access.

7

Anger
If you must read the
rest of [the Go memory
model] to understand
the behavior of your
program, you are being
too clever.

Don't be clever.

Excerpts from the Go Memory Model

the
[A Go] implementation
may always react to a
data race by reporting
the race and
terminating the
program.

Gopher
When it comes to
programs with races,
both programmers and
compilers should
remember the advice:
don't be clever.

© HASHICORP8

Map Races Crash

Data races with maps will crash
your program even without
enabling the race detector.

func main() {
m := map[int]int{}

go func() {
for i := 0; i < 1e10; i++ {

m[i] = i
}

}()
go func() {

for i := 0; i < 1e10; i++ {
m[i] = i

}
}()

←context.Background().Done()
}

$ go run mapparty.go
fatal error: concurrent map writes

© HASHICORP

Data races can lead to security vulnerabilities

9

Why Should I Care? Security Edition

© HASHICORP10

Writing data race free
programs
demonstrates an
understanding of the
program’s execution.

© HASHICORP11

How do I find data races?

© HASHICORP12

Go’s Race
Detector

The -race flag enables the
race detector on any Go
command that creates or
runs a binary:

● go install
● go build
● go test
● go get

func main() {
a := 1

go func() {
fmt.Println(a)

}()

a = 2
}

$ go run -race simple.go
==================
WARNING: DATA RACE
Read at 0x00c0001ae008 by goroutine 7: ...

Previous write at 0x00c0001ae008 by main goroutine:
 ...

Goroutine 7 (running) created at: ...
==================
2

© HASHICORP13

Zero false positives

© HASHICORP14

0 Lies Detected

The race detector may not
detect all races, but it will
never lie to you about a race.

When it reports a data race,
there’s a data race.

https://go.dev/blog/race-detector

https://go.dev/blog/race-detector

© HASHICORP15

Anatomy of a
detected race

1. Delimited by ======
2. Special exit code (66)
3. Where the read happened
4. Where the write happened
5. Where non-main goroutines

were started

$ go run -race simple/simple.go > /dev/null
==================
WARNING: DATA RACE
Read at 0x00c00001a0b8 by goroutine 7:
 main.main.func1()
 /.../simple.go:9 +0x3a

Previous write at 0x00c00001a0b8 by main goroutine:
 main.main()
 /.../simple.go:12 +0xb8

Goroutine 7 (running) created at:
 main.main()
 /.../simple.go:8 +0xae
==================
Found 1 data race(s)
exit status 66

© HASHICORP16

How do I fix data races?

© HASHICORP17

Atomics

Atomics can always fix a
data race, but it doesn’t
mean your program makes
any sense.

Both reads and writes must
use atomics to adhere to the
Go memory model.

func main() {
var a int64 = 1

go func() {
fmt.Println(atomic.LoadInt64(&a))

}()

atomic.AddInt64(&a, 1)
}

$ go run -race simple/simple.go
2

© HASHICORP18

Race
Conditions
Aka “bad interleaving”

A race condition is a
situation, in which the result
of an operation depends on
the interleaving of certain
individual operations.

In this case the program
could still print 1 or 2
depending on how the
goroutines are scheduled.

func main() {
var a int64 = 1

go func() {
fmt.Println(atomic.LoadInt64(&a))

}()

atomic.AddInt64(&a, 1)
}

$ go run -race simple/simple.go
2

© HASHICORP19

Start Making
Sense

To fix both the data race and
race condition, we need to
make sense of this program.

We can make some sense
out of it (and fix races) by
using a channel.

func main() {
a := make(chan int)

go func() {
fmt.Println(←a)

}()

a ← 2
}

$ go run -race simple/simple.go
2

© HASHICORP20

Mutexes and
Critical Sections
Mutexes (aka locks) are a
common tool for serializing
access to critical sections.

This can prevent both data
races and race conditions.

“Critical section” is a fancy
way of saying “code that
must execute atomically on
shared variables.”

Critical sections can be
short (getters) or long.

func (c *Client) GetConfig() *config.Config {
c.configLock.Lock()
defer c.configLock.Unlock()
return c.config

}

// Shutdown is used to tear down the client
func (c *Client) Shutdown() error {

c.shutdownLock.Lock()
defer c.shutdownLock.Unlock()

if c.shutdown {
c.logger.Info("already shutdown")
return nil

}
c.logger.Info("shutting down")

// Stop renewing tokens and secrets
if c.vaultClient != nil {

c.vaultClient.Stop()
}

// Stop Garbage collector
c.garbageCollector.Stop()

arGroup := group{}
if c.GetConfig().DevMode {

// In DevMode destroy all the running
allocations.

for _, ar := range c.getAllocRunners() {
ar.Destroy()
arGroup.AddCh(ar.DestroyCh())

}
} else {

// In normal mode call shutdown
for _, ar := range c.getAllocRunners() {

ar.Shutdown()
arGroup.AddCh(ar.ShutdownCh())

}
}
arGroup.Wait()

// Assert the implementation, so we can trigger
the shutdown call. This is

// the only place this occurs, so it's OK to
store the interface rather

// than the implementation.
if h, ok :=

c.nomadService.(*nsd.ServiceRegistrationHandler); ok {
h.Shutdown()

}

// Shutdown the plugin managers
c.pluginManagers.Shutdown()

c.shutdown = true
close(c.shutdownCh)

// Must close connection pool to unblock alloc
watcher

c.connPool.Shutdown()

// Wait for goroutines to stop
c.shutdownGroup.Wait()

// One final save state
c.saveState()
return c.stateDB.Close()

}

© HASHICORP21

Locks can get tricky…

© HASHICORP22

Create Helpers
to Manage
Critical Sections

1. Lock
2. Copy
3. Mutate
4. Overwrite

Is a handy pattern for
backfilling mutability on big
balls of state (when you have to).

Access c.config requires
acquiring the configLock!

func (c *Client) UpdateConfig(cb func(*Config)) *Config {
c.configLock.Lock()
defer c.configLock.Unlock()

newConfig := c.config.Copy()

cb(newConfig)

c.config = newConfig

return newConfig
}

func (c *Client) someFunc() {

c.UpdateConfig(func(c *Config) {
c.Node.Status = structs.NodeStatusReady

})

}

© HASHICORP23

Channels and Select are your Friend!

© HASHICORP24

Channels and
Select are Great

They often imbue your code
with more meaning than
atomics or mutexes.

func (c *Client) registerAndHeartbeat() {
// Start watching changes for node changes
go c.watchNodeUpdates()

// Start watching for emitting node events
go c.watchNodeEvents()

heartbeat :=
time.After(helper.RandomStagger(heartbeatStagger))

for {
select {
case ←c.rpcRetryWatcher():
case ←heartbeat:
case ←c.shutdownCh:

return
}
if err := c.updateNodeStatus(); err != nil {

// ...

© HASHICORP25

…but there are worse fates than locks.

© HASHICORP

● State changes were sent to a goroutine via a channel

● The goroutine calls some other methods while processing changes

● If those other methods emitted a state change to the channel…

● …deadlock because the receiver is also the sender!

Buffered channel?

● It was…
● …but that only made it harder to hit because the buffer had to fill with events first.

26

How could channels do that?

© HASHICORP

Data Races are Bugs
There are no benign data races.

Treat them like bugs and fix
them.

It can be a journey (Nomad’s test
suite is not data race free).

27

Race Detector
Use it in tests.

Use it when developing.

Trust it.

Understand your Code
Programs free from data races
and race conditions demonstrate
a high level of understanding by
their developers.

Solving races helps you
understand how your program is
composed and executes.

The What, Why, and How of Go Data Races

© HASHICORP

Thank you
@schmichael[@mastodon.cloud]

mschurter@hashicorp.com

All Nomad icons thanks to Michael Lange
https://github.com/DingoEatingFuzz/nomad-emoji

mailto:mschurter@hashicorp.com
https://github.com/DingoEatingFuzz/nomad-emoji

