Scaling with m@
by Michael Schurter 2011

@schmichael

What is MongoDB"? Community

* Developer by 10gen
« AGPL Database

e Apache drivers

“ mongo b

e JIRA issue tracking
e On GitHub

http://www.10gen.com/
http://www.10gen.com/
https://jira.mongodb.org/
https://jira.mongodb.org/
https://github.com/mongodb/
https://github.com/mongodb/

What is MongoDB?? Architecture

e Server
* Database
» Collection (table)
* Document (BSON; like a row)

e Fields (columns)

Queries are on the collection level (no joins)
Indexes are per collection

Documents have a unique ID

Atomicity is at the document level

What is MongoDB®? Documents

« BSON
» Open standard: bsonspec.org

e Binary JSON or protobufs without the schema
e Objects/Sub-documents/mappings

e Arrays

e UTF-8 Strings

e Floats, Integers (32 or 64 bit)

e Timestamps, DatelTimes

e Booleans

e Binary

e Assorted others specific to Mongo's use case (Regex, ObjectlD)

http://bsonspec.org/
http://bsonspec.org/

What is MongoDB” Querying

e Querying
e Dynamic queries (JavaScript code or objects)
 Map/Reduce (JavaScript functions)

e Secondary indexes (B-tree, R-tree for simple geospatial)

#

What is MongoDB®? Querying (2)

e Search by value or inside an array:
- db.collection.find({tags: "some tag"})

e [{..0}, 4o}, oudl]

* Update tag lists:

e update({app: "...", $addToSet: {tags:
"another tag"})

* No escaping values

* Declarative syntax makes for easy composition

Must escape keys and insure values aren’t objects

What is MongoDB" Operations

e Replication

* Master/Slave

* Replica Pats Sets
* Auto-sharding (data partitioning)
* Tools

 mongo shell, mongostat

* mongo{dump,restore,export,import}

Multi-master slaves
mongo shell is javascript
mongostat is *amazing*

What is(n’t) Mongo®? Durability

e Single server durability added in 1.8 (off by default)
* Preference is Replica Sets

* No guarantee your data was written with safe=True
 Use safe=True

* No guarantee your data was replicated without w=1

e |[f a server goes down, trash it’s data and use a slave

Unknown performance hit for durability

Probably worse than systems that ship WALs/journals as part of
replication

safe=False is literally fire and forget

What is MongoDB®? Performance

e | hear It's fast
e [t is until:

e Your data no longer fits in memory

* Your indexes no longer fit In memory

e You miss the index (full collection scan)
* You use safe=TIrue

* You use w>0

 You turn on journaling/durability

Oodles of marketing
Anecdote: Cassandra vs. Memcache

s.0kf

8.0k
7.0k
6.0k
5.0k
40k
3.0k
20k
10k
0.0

ops / second

Ops per second

MongoDB ops - by day

H3INIL30 IE]C'.LJ 100104 Y

@ getmore
B insert
O update
O command
W query
B delete
B total

: 1n: vg. AX .
0.00 0.00 0.00 0.00
0.00 0.00 511.90 715.99
0.00 0.00 0.00 0.00

40. 04m 39.67m 511.94 716.03
13. 35m 13. 22m 5.12k 7.16k
0.00 0.00 0.00 0.00
53. 38m 52.89m 6. 14k 8. 59k

Munin 1 !-?St update: Sat May 28 22:50:05 2011

Scaling with MongoDB by Michael Schurter - OS Bridge, 2011.06.22

Random internet picture of a read heavy system
Ours was write heavy and ran into something else first... but I’'m getting
ahead of myself

In RAM

Not In RAM

RiNse; repeat.

Scaling with MongoDB by Michael Schurter - OS Bridge, 2011.06.22

RAM is probably your single most important resource

SSDs would be great
Sharding essentially buys you the ability to add RAM forever

lol voltdb

In the beginning

* Project at YouGov prior to Urban Airship

e User/group database

* \Was custom datastore, migrated to MongoDB 1.2
* Highly recommended to Michael Richardson

» Single PostgreSQL instance dying under load

e | snuck into Urban Airship before anything blew up

« User permissions and profiles were relatively complex

* |nitially stored in a BDB-backed CouchDB-inspired Python service.
o Worked fine, a bit slow, major NIH-Syndrome

 MongoDB (1.27) to the rescue!
o Perfect fit for a small read-heavy, write-light dataset

Early pertf. issue: syncdelay

* The theory: Durability within a certain time-frame. (default: 60s)

« Barely documented

e Never worked for us

« Syncs would cause infinite block loops: block for 30s, apply backed up
writes, block another 30s, never catch up.

» Just let the kernel handle flushing

syncdelay useless with journaling? No hints in docs
There are proc tunables for how the kernel handles dirty pages

App Servers

Replica 1 Replica 2

Initial MongoDB setup at Urban Airship

Replication

e Streaming asynchronous replication
e Streams an oplog; no conflict resolution
* Master accepts writes, can read from slaves
* Master + Slaves or...
e Replica Sets (auto-election & failover)
* Non-idempotent operations like $inc/$push/etc are
changed to their idempotent form:
{devices: 1,560} - {$inc: {devices: 1}} - {devices: 1,561}

" 4

But we were using replica pairs which were deprecated before replica sets
were even officially released

Had a driver + replica sets issue where writes with safe=False went to
slave (safe=False means we never saw an error)

App Servers

Writes Long

r Most Reads Reads 1

After the replica set bug we went to a simpler setup

Locked In .

 MongoDB only has Global (per-server) locks
e Early versions (~1.2) locked server on every query
o Later (~1.4) separate read & write locks
* Present (>=1.6) updates use read lock while seeking
e Future (1.97) Per collection locks

 Moral: Do not run long queries on your master

Similar to dynamic programming languages

Keep indexes in memory to keep read locks short

Have fast disks - NOT EBS (See Gavin’s talk http://bit.ly/j6pR21)
nttps://jira.mongodb.org/browse /SERVER-1240

App Servers

Writes
Most Reads Reads

Master Read Slave

Backup Slave

4
- s ‘_;

3rd generation mongodb setup - separate long reads from backups

Double (Up)Dating

e Cause: update(..., {$push: {big object}})
 Effect:

* Big object exceeds document padding

* Document is moved to end of data

* Update comes along and re-updates all documents

Changing your schema can avoid this
... how do you change schemaless data’s schema? not easily
Isn’t guaranteed to hit all documents, so you can’t just $pop once

Flipo/Flop for the Win

e Data files get sparse as documents are moved
* [Indexes could get sparse (getting better & better)

e Sparse indexes new in 1.8 (have to recreate old indexes)
* The Solution: Take slave offline, resync, failover

e Requires downtime without Replica Sets

e Future (1.9) - In-place compaction

&

Docs are padded to avoid moving; but when they are moved, gaps can

grow
Poor data locality in disk / in memory

Schemaless means lots of space wasted repeating field names / structure
In-place - *not* online. Queries & replication stopped before compaction

When adding RAM isn’t enough

 More RAM doesn’t alleviate pain of full server locks
e You have to write to disk someday
e Solution: Partition the cluster

* Good old days: manually shard your data

e Brave new world (1.6): auto-sharding

Auto-Sharding

e \We don’t use it

e Couldn’t get it to work in any of the 1.5 dev releases

e Couldn’t pay me enough to use 1.6.0, maylbe safe post 1.8.1

* Auto-shards based on a shard-key per collection
e QOrder preserving partitioner
e Querying anything other than the shard-key spams the cluster
e Each shard should be a Replica Set

* Run 1 mongos per app server

&

Early adopters seemed to all have 10gen support & “special builds”
Took down 4sqg because adding shards & rebalancing incurs expenses in

any distributed system (most? maybe there are clever ways to mitigate...)
Much larger ops burden

Make the right decisions initially (not totally schemaless)

App Servers

L Writes Long
[MostReads] Reads }

=
3

=

Read/Backup Slave Master 2 Master

Backup Slave

4th (and final) generation

Shard by unrelated datasets

Don’t use an underpowered backup slave

Monitor replication delay closely - in a disaster nothing else matters if
your replication delay is *14 days*

Disaster Recovery

So what happens when things go *really* wrong?

EBS Goes on Strike

e EBS volumes grind to a halt (or at least 1 per RAID)

e Restore from backup in a different Availability Zone!

* 4 hours later the restore is still building indexes

e \Wait for EBS to come back or use stale backup data”

e |n the end: EBS came back before restore finished.

When your HDD locks, MongoDB locks

mongorestore --indexeslLast

e Always use it
e Should be On by default

e Lock database and copy files (snhapshot) is best

P 4

Waiting for indexes to build takes approximately as long as it takes AWS engineers tc
EBS issues.

Goodbye MongoDB

* Moved bulk of data to manually partitioned PostgreSQL
* 120 GB of MongoDB data became 70 GB in PostgreSQL
* Migration difficult due to undisciplined MongoDB code

PostgreSQL 9.0’s streaming replication is nice
Slightly better failover story than MongoDB Master/Slave
Lack of data abstraction layer let us get sloppy - long migration

e Jest MongoDB for your use case

e [f you can’t get auto-sharding working, probably run
e That goes double for Replica Sets
e Choose your schema well (especially with sharding)

e Use short key names + a data abstraction layer

o {created_time: new DateTime()} = 27 bytes
e {created: new DateTime()} = 22 bytes

e {ct: new DatelTime()} = 17 bytes

> 4

With Auto-sharding *and* Replica Sets, MongoDB’s scaling and durability
stories are just too scary to trust.
You’ll thank me when your data files are 1/3 smaller.

Questions?

Content, text & diagrams, public domain (steal away)

Slide template copyright Urban Airship (sorry)

Scaling with MongoDB by Michael Schurter - OS Bridge, 2011.06.22

